## Attraction Ambassadors: Door Jig

Cyrus Choi Marcus Garcia Geu Kenyi Johnny Vu Avery Poon Darusan Veerakumar



**Cyrus Choi** 

## **TABLE OF CONTENTS**

01 02 03

Design Thinking

**Bill of Materials** 

**Market Research** 

04

05

06

Issues and Constraints

**Lessons Learned** 

Summary



# Empathize

**Darusan Veerakumar** 

### **Client meetings**



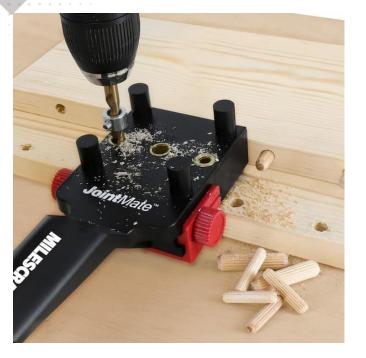
- Understand needs and expectations
- Feedback and iteration.
- Prioritizing features
- Resource optimization

Darusan Veerakumar

### **Market research**



- Understand user needs
- Risk reduction
- Competitive analysis
- Validating concept


## **Take-Aways From Client Meet**

#### Briefing

| High Priority Issues | <ul> <li>Jig is re-useable</li> <li>Jig is easily useable and requires little to no set-up time (time efficient)</li> <li>Jig is adjustable to be adaptable to the different back sets and thicknesses</li> </ul> |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | <ul> <li>Jig should be very precise/accurate</li> </ul>                                                                                                                                                           |

# Define

**Darusan Veerakumar** 



### **Problem statement**

"The objective is to develop a more efficient and cost-effective jig that improves production line adaptability and reduces setup times and material cost."

# Specification chart/metrics chart

| ÷ | ₽              |                                                |  |  |  |  |  |  |  |  |
|---|----------------|------------------------------------------------|--|--|--|--|--|--|--|--|
|   | Cutout Height  | 6-¾″                                           |  |  |  |  |  |  |  |  |
|   | Cutout Width   | 1″                                             |  |  |  |  |  |  |  |  |
|   | Cutout Backset | Varies. Although should be equal on both sides |  |  |  |  |  |  |  |  |
|   |                | of the cutout since it is centered.            |  |  |  |  |  |  |  |  |

#### Jig Setup Speed Requirement

| Clamping on | Should be able to clamp on easily<br>~ < 30 seconds |  |
|-------------|-----------------------------------------------------|--|
| -           | Alignment process should be simple<br>~< 1 minute   |  |

Ideate

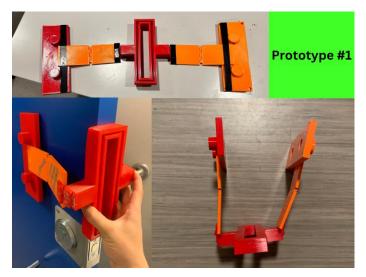
Johnny Vu

Johnny Vu

## **Initial Subsystems**

- Weight
  - compact and manageable
- Storage Space
  - convenience
- Practicality
  - Simple and easy to use
- Reusability
  - durability

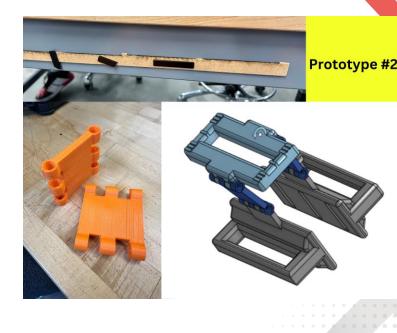
#### Johnny Vu


|                         | Subsystem | Weight of Jig             | Storage Space           | Practicality                  | Reusability                         |
|-------------------------|-----------|---------------------------|-------------------------|-------------------------------|-------------------------------------|
| Conceptual Design Ideas | 1         |                           |                         |                               |                                     |
|                         | 1         | Lightweight Materials     | Foldable Design         | Quick attachment method       | Durable Materials                   |
|                         | 1         | Modular Design            | Wall Mounted Storage    | Colour Coded Components       | Reinforced Critical Joints          |
|                         | 1         | Removable Counterweights  | Minimize Required Parts | Cutout accomodating all tools | Design With Easiy Replaceable Parts |
|                         | 1         | Minimized Volume          | Hook Mount System       | Clear marking and guides      | Universal to all Doors              |
|                         | 1         | Evenly Distributed Weight | Nested Storage System   | Self Centering                |                                     |

# Prototype

## **Prototype Subsystems Considered**

- Weight
- Storage Space
- Practicality
- Reusability
- Magnet Strength


## **Prototype One**



- Comprehensive Prototype
- Directed towards practicality and reusability
- Targets:
  - Test basic structure functionality
  - Structural integrity

## Prototype Two

- Specific Prototype
- Primarily focusing on magnet strength
- Included structural design updates based off prototype 1
- Time constraint, switched from electromagnet to neodymium
- Target:
  - Determine if magnets strong enough for a 3/32" wooden veneer



**Marcus Garcia** 

## **Prototype Three**

- Comprehensive prototype
- Focus on practicality, reusability, storage space, and weight after design changes
- Targets:
  - Ensure centering method works
  - Ensure hinges allow for flat surface connection between magnet and door
  - Ensure handle design allows for hanging storage method
  - Colour matching of parts



# Testing

## Magnet Testing


## 9V – 50 N Electric Lifting Magnet

Pros

- Overall size: 25 x 20 mm
- \$13.49 + tax

#### Cons

• Lack of penetrability through 1/8" MDF



## Magnet Testing

## 12V – 400 N Electric Lifting Magnet

#### Pros

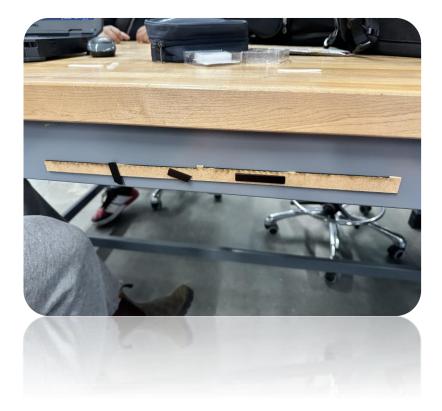
• Can penetrate through 1/8" of MDF

#### Cons

- \$ 17.99 + tax
- Overall size: 49 x 22 mm



## Magnet Testing


## Neodymium Bar Magnets

#### Pros

- Can penetrate through 1/8" of MDF
- Replaces the wiring through the jig

#### Cons

• Needs to be handled with care



## Hinge Testing

### 3D Printed PLA Hinges (Friction fit)

#### Pros

• Prints in place, easy to manufacture

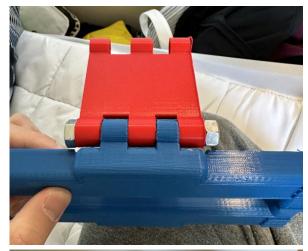
#### Cons

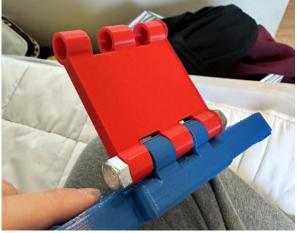
- Not securely mounted onto the rest of the components
- Friction fit wears out
- Each layer was difficult to print





## Hinge Testing


### Hinges (Bolt + Nut)


#### Pros

- Moving parts will **not wear out by friction**
- Can be **disassembled** in the event of a component needing repair
- 100% infill makes the component sturdy

#### Cons

• Getting the hinge to move when first printed requires an adequate amount of force





## Infill Testing

### Hinge Midpiece (Lightning infill pattern)

Pros

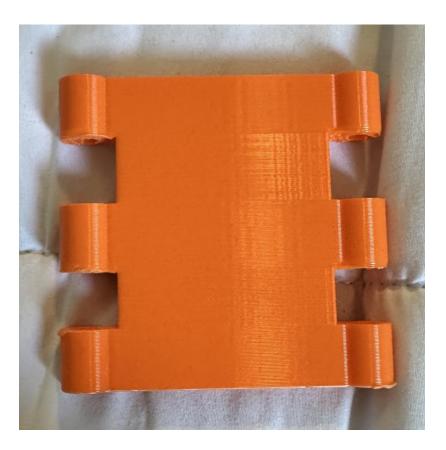
• Printing **time was reduced**, even at 100% infill

#### Cons

- Sections that did not have the hinge were hollow
- Would not survive day-to-day wear and tear



## Infill Testing


### Hinge Midpiece (Grid infill pattern)

Pros

- Solid and higher quality
- Won't break when pressing into it

#### Cons

- Longer print time
- More filament used





# Bill of Materials

Cyrus Choi



Subtotal \$47.98 Total \$54.22 (incl. tax)



# Market Research

Marcus Garcia

### **RYOBI Door Hinge Template**



Pros:

- Lightweight, accurate design
- Has **rubber grips** to allow for friction to be evident when clamped against the side of a door

Cons:

- Breaks easily when the side of a drill bit hits the jig
- Clamping rod damages door due to the clamp design
- \$41.58

### **MILWAUKEE TOOL** Door Lock Installation Jig



Pros:

- Lightweight, accurate design
- Allows for hole size adjustment

#### Cons:

- Clamp is known to fail due to only clamping on one side
- To use safely, the jig only works when additional clamps added to the jig
- \$56.48



## Issues

#### **Avery Poon**

## **Pricing Issues**

### Magnets

lssue

- Initial Magnets were too expensive
- Most of the full cost of our prototypes were the magnets
- Considered making our own electromagnets

#### Fix

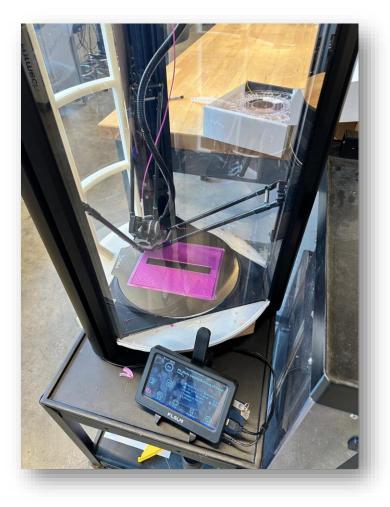
- Professor Majeed provided cheap magnets
- He also provided a place that sells cheap magnets





#### **Avery Poon**

## Time


### Printing and 3D Modeling

#### Issue

- Ideas and making the model
- Printing takes a considerable amount of time
- Print Fails

#### Fix

- Reserve more time into making the model
- Keep an eye on the printers
- Book more printers





Geu Kenyi



- Iterative Design Process
- Importance of Collaboration
- Testing and Validation
- Adaptability to changes

06

# Summary

Geu Kenyi



- Developed a problem statement based of client needs
- Developed a unique but efficient design that satisfied all the user needs and provided a solution to the problem statement using the design process

# **Questions?**

Thank you!

Scan to see more behind the scenes photos from our group



Cyrus Choi



## bit.ly/gng1103testing